z-logo
open-access-imgOpen Access
FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY
Author(s) -
Mark J. Rigali,
Mike L. Fulcher
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/829541
Subject(s) - materials science , shrinkage , porosity , monolith , sintering , composite material , cracking , fabrication , chemistry , alternative medicine , pathology , catalysis , medicine , biochemistry
During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. In the previous reporting period, a two-stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. During the current reporting period, work was performed to characterize the two-stage binder removal process for WC-Co based FM material systems. Use of this process has resulted in the fabrication of defect free sintered WC-Co FM bodies, with minimal free carbon porosity and densities approaching 100% theoretical. With the elimination of free carbon porosity and other binder removal process related defects, development work focused on optimizing the densification and eliminating defects observed in WC-Co based FM consolidated by pressureless sintering. Shrinkage of the monolithic core and shell materials used in the WC-Co based FM system was measured, and differences in material shrinkage were identified as a potential cause of cell boundary cracking observed in sintered parts. Re-formulation of material blends for this system was begun, with the goal of eliminating mechanical stresses during sintering by matching the volumetric shrinkage of the core and shell materials. Thirty-three 7/8 inch drill bit inserts (WC-Co(6%)/WC-Co(16%) FM) were hot pressed during the reporting period. Six of these inserts were delivered for field-testing by Superior Rock Bit during the upcoming reporting period. In addition, Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-TiCN FM cutting tool inserts were fabricated, and cutting tests performed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom