z-logo
open-access-imgOpen Access
Measurements And Models For Hazardous Chemical and Mixed Wastes
Author(s) -
Cynthia D. Holcomb,
Laurel A. Watts,
Stephanie L. Outcalt,
Beverly Louie,
Michael E. Mullins,
Tony Rogers,
Andrew Kline
Publication year - 2001
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/828601
Subject(s) - hazardous waste , dispose pattern , waste management , process engineering , phase (matter) , environmental science , cleaner production , municipal solid waste , engineering , chemistry , organic chemistry
Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. A large quantity of the waste generated by the U.S. chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom