Removal of Radioactive Cations and Anions from Polluted Water Using Ligand-Modified Colloid-Enhanced Ultrafiltration
Author(s) -
John F. Scamehorn,
Cynthia E. A. Palmer,
Richard W. Taylor
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/828491
Subject(s) - ultrafiltration (renal) , chemistry , colloid , human decontamination , uranium , aqueous solution , chromate conversion coating , filtration (mathematics) , radioactive waste , inorganic chemistry , chromium , waste management , nuclear chemistry , chromatography , materials science , organic chemistry , statistics , mathematics , engineering , metallurgy
The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic nonradioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium and lead along with chromium (as chromate). Anionic or amphiphilic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from ground water, mixed waste, and aqueous waste solutions produced during decontamination and decommissioning operations. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom