Variational formulation of the Gardner's restacking algorithm
Author(s) -
I. Y. Dodin,
N. J. Fisch
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/827920
Subject(s) - formalism (music) , hamiltonian (control theory) , physics , plasma , toroid , calculus of variations , phase space , magnetic field , classical mechanics , momentum transfer , algorithm , statistical physics , quantum mechanics , mathematics , mathematical optimization , art , musical , visual arts , scattering
The incompressibility of the phase flow of Hamiltonian wave-plasma interactions restrains the class of realizable wave-driven transformations of the particle distribution. After the interaction, the distribution remains composed of the original phase-space elements, or local densities, which are only rearranged (''restacked'') by the wave. A variational formalism is developed to study the corresponding limitations on the energy and momentum transfer. A case of particular interest is a toroidal plasma immersed in a dc magnetic field. The restacking algorithm by Gardner [Phys. Fluids 6, 839 (1963)] is formulated precisely. The minimum energy state for a plasma with a given current is determine
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom