z-logo
open-access-imgOpen Access
COOPERATIVE RESEARCH IN C1 CHEMISTRY
Author(s) -
G.P. Huffman
Publication year - 2001
Language(s) - English
Resource type - Reports
DOI - 10.2172/827157
Subject(s) - oxygenate , diesel fuel , natural gas , chemistry , methane , carbon monoxide , catalysis , supercritical fluid , methanol , waste management , syngas , chemical engineering , organic chemistry , engineering
Faculty and students from five universities (Kentucky, West Virginia, Utah, Pittsburgh and Auburn) are collaborating on a basic research program to develop novel C1 chemistry processes for the production of clean, high quality transportation fuel. An Industrial Advisory Board (IAB) with members from Chevron, Eastman Chemical, Energy International, Teir Associates, and the Department of Defense has been formed to provide practical guidance to the program. The program has two principal objectives. (1) Develop technology for conversion of C1 source materials (natural gas, synthesis gas, carbon dioxide and monoxide, and methanol) into clean, high efficiency transportation fuel. (2) Develop novel processes for producing hydrogen from natural gas and other hydrocarbons. Some of the principal accomplishments of the program in its first two years are: (1) The addition of acetylenic compounds in Fischer-Tropsch synthesis is found to produce significant amounts of oxygenated products in FT diesel fuels. Such oxygenated products should decrease particulate matter (PM) emissions. (2) Nanoscale, binary, Fe-based catalysts supported on alumina have been shown to have significant activity for the decomposition of methane into pure hydrogen and potentially valuable multi-walled carbon nanotubes. (3) Catalytic synthesis processes have been developed for synthesis of diethyl carbonate, higher ethers, and higher alcohols from C1 source materials. Testing of the effect of adding these oxygenates to diesel fuel on PM emissions has begun using a well-equipped small diesel engine test facility. (4) Supercritical fluid (SCF) FT synthesis has been conducted under SCF hexane using both Fe and Co catalysts. There is a marked effect on the hydrocarbon product distribution, with a shift to higher carbon number products. These and other results are summarized

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here