Test Results of a Compact Conventional Modulator for Two-Klystron Operation
Author(s) -
S. Gold
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/826920
Subject(s) - klystron , electrical engineering , insulated gate bipolar transistor , linear particle accelerator , power (physics) , voltage , modulation (music) , high voltage , engineering , physics , optics , acoustics , beam (structure) , quantum mechanics
Modulator technology has not advanced greatly over the last 30 years. Today, with the advent of the High Voltage, High Power IGBT there are several approaches for a solid state ON/OFF switched modulator. Klystron and accelerator technology is forcing voltages and peak powers higher such as the demand for 500 kV and 500 amperes peak to power two X-Band klystrons. Conventional technology (line-type modulators) were never overly concerned about rise time and efficiency. A few years ago, the klystron department at Stanford Linear Accelerator Center (SLAC) undertook an investigation into what could be done in a conventional modulator at 500 kV. We have reported on test bed measurements and shown both conceptual and hardware pictures during design and construction. We have now completed the modulator tank.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom