Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique
Author(s) -
Mike Hicks
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/826881
Subject(s) - spacecraft , grid , observatory , composite number , telescope , computer science , aerospace engineering , electrical conductor , finite element method , mechanical engineering , materials science , structural engineering , engineering , composite material , optics , physics , geology , astronomy , geodesy
The Gamma-Ray Large Area Space Telescope is an orbital observatory being planned as a joint DOE/NASA mission. The primary support of the instrument requires a grid structure which is very stiff, strong, light-weight, and thermally conductive. A carbon fiber composite grid design using a novel manufacture technique is proposed which meets or exceeds an aluminum design in all performance criteria and is economically competitive as well. Finite element analysis, confirmed by testing of a sample grid, is used to examine trade-offs for the materials and layups. Based on these analyses, recommendations are given for a viable design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom