z-logo
open-access-imgOpen Access
The Spin Structure of the Neutron
Author(s) -
S Churchwell
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/826610
Subject(s) - physics , sum rule in quantum mechanics , scattering , atomic physics , nucleon , inelastic scattering , electron , neutron , polarization (electrochemistry) , nuclear physics , particle physics , chemistry , quantum chromodynamics , optics
A description of SLAC experiment E154, a precision measurement of the neutron's longitudinal spin structure function g{sub 1}{sup n}, is presented. Deep inelastic electron scattering was used to measure the structure function in the kinematic range 0.014 < x < 0.7, and 1 < Q{sup 2} < 17 GeV{sup 2}. A measurement of the transverse spin structure function g{sub 2}{sup n} was also made, but with significantly lower statistical precision. Electrons with an average polarization of 82 {+-} 2% and an energy of 48.3 GeV were scattered off polarized {sup 3}He nuclei having an average polarization of 38%. Two independent magnetic spectrometers set at scattering angles of 2.75{sup o} and 5.5{sup o} were used to acquire about 100 million events during a two month run in late 1995. The data were analyzed to yield the integral over the measured region: {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst), which is several standard deviations below the Ellis-Jaffe sum rule predictions. When these data were combined with the proton g{sub 1}{sup p} structure function data from the SMC and E143 experiments, the Bjorken sum rule over the measured x range was found to be within 10% of themore » predicted value. The integral of the g{sub 2}{sup n} data, dominated by the statistical uncertainty, was found to be {integral}{sub 0.014}{sup 0.7} g{sub 2}{sup n}(x)dx = 0.19 {+-} 0.17(stat) {+-} 0.02(syst), in agreement with the Burkhardt-Cottingham sum rule prediction. The g{sub 1}{sup n} structure function data at low x were found to be inconsistent with the traditional asymptotic forms, bringing into question the methods used in the past.« less

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom