Beam-Based Alignment of the NLC Main Linac, Part Two: Dispersion-Free Steering and Dispersion Bumps(LCC-0071)
Author(s) -
Peter Tenenbaum
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/826568
Subject(s) - linear particle accelerator , offset (computer science) , thermal emittance , dispersion (optics) , magnet , optics , computer science , physics , beam (structure) , engineering , electrical engineering , operating system
The standard prescription for NLC main linac steering assumes that the RMS offset between a quad's magnetic center and the corresponding BPM's electrical center can be determined at the level of a micron. This is a fearsome requirement, and will be particularly difficult to achieve if hybrid iron/permanent magnet quads are used in the main linac. As an alternative, the Dispersion Free Steering (DFS) [1] algorithm is adapted to the NLC main linac environment; the DFS algorithm does not require knowledge of the quad-BPM offsets. The results of simulation studies of this adaptation are presented. In addition, the use of closed orbit bumps to globally correct dispersive emittance growth is considered. The studies indicate that DFS can be used successfully in the NLC main linac environment, and that dispersion bumps are a useful addition to the linac steering ''toolbox,'' regardless of the main algorithm selected.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom