z-logo
open-access-imgOpen Access
CONTRIBUTION OF SEMI-VOLATILE ORGANIC MATERIAL TO AMBIENT PM2.5
Author(s) -
Delbert J. Eatough,
William K. Modey,
Rebecca Sizemore,
Michael F. Simpson
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/826138
Subject(s) - sulfate , environmental chemistry , particulates , atmosphere (unit) , nitrate , aerosol , ammonium nitrate , environmental science , ammonium sulfate , volatile organic compound , particle (ecology) , chemistry , mineralogy , meteorology , geology , organic chemistry , physics , oceanography
Both annual 24-h average and seasonal diurnal samples collected at NETL during the research program have been analyzed. The fine particulate components determined include PM{sub 2.5} mass, ammonium sulfate, ammonium nitrate, elemental and organic carbonaceous material and trace elements. The analysis of the nitrate and organic material includes both the identification of nonvolatile material retained by the particle collection filter and semi-volatile material lost from the particles during sample collection. The results obtained in these analyses indicate that both the semivolatile and nonvolatile organic material in the fine particles sampled at the NETL site originate from mobile emissions in the local area. However, the majority of the nonvolatile material is associated with primary emissions and the majority of the semi-volatile material is secondary, being formed from photochemical processes in the atmosphere. In contrast, the fine particulate sulfate does not originate from the local area but is transported into the study region, mostly from sources in the Ohio River Valley. These observations have been supported by both detailed meteorological and apportionment analysis of the data

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom