z-logo
open-access-imgOpen Access
CORROSION OF HIGH-TEMPERATURE ALLOYS
Author(s) -
John P. Hurley,
John P. Kay
Publication year - 1999
Language(s) - English
Resource type - Reports
DOI - 10.2172/824979
Subject(s) - corrosion , alloy , metallurgy , materials science , oxide , high temperature corrosion , sulfidation , niobium , chromium , microstructure , chlorine , sulfur
Five alloys were tested in the presence of water vapor and water vapor with HCl for 1000 hours using simulated combustion gas. Samples were removed at intervals during each test and measured for determination of corrosion rates. One sample of each alloy was examined with a SEM after the completion of each test. Cumulative corrosion depths were similar for the superstainless alloys. Corrosion for Alloy TP310 roughly doubled. Corrosion for the enhanced stainless alloys changed dramatically with the addition of chlorine. Corrosion for Alloy RA85H increased threefold, whereas Alloy TP347HFG showed an eightfold increase. SEM examination of the alloys revealed that water vapor alone allowed the formation of chromium oxide protective layers on the superstainless alloys. The enhanced stainless alloys underwent more corrosion due to greater attack of sulfur. Iron-rich oxide layers were more likely to form, which do not provide protection from further corrosion. The addition of chlorine further increased the corrosion because of its ability to diffuse through the oxide layers and react with iron. This resulted in a broken, discontinuous, and loose oxide layer that offered less protection. Niobium, although added to aid in creep strength, was found to be detrimental to corrosion resistance. The niobium tended to be concentrated in nodules and was easily attacked through sulfidation, providing conduits for further corrosion deep into the alloy. The alloys that displayed the best corrosion resistance were those which could produce chromium oxide protective layers. The predicted microstructure of all alloys except Alloy HR3C is the same and provided no further information relating to corrosion resistance. No correlation can be found relating corrosion resistance to the quantity of minor austenite-or ferrite-stabilizing elements. Also, there does not appear to be a correlation between corrosion resistance and the Cr:Ni ratio of the alloy. These alloys were tested for their corrosion resistance alone. Strength and creep tests were not performed. Based only their corrosion resistance, Alloys RA310 and TP310 were shown to be the best suited to resist chlorine in a combustion environment. These alloys produced protective chromium oxide layers, displayed more general rather than localized corrosion, and their additives did not react to provide conduits for further corrosion

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here