z-logo
open-access-imgOpen Access
Uncertainties associated with the definition of a hydrologic source term for the Nevada Test Site
Author(s) -
David K. Smith,
B. K. Esser,
J.L. Thompson
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/82425
Subject(s) - radionuclide , groundwater , environmental science , radioactive waste , groundwater flow , term (time) , hydrology (agriculture) , residual , hydrological modelling , aquifer , geology , waste management , engineering , computer science , geotechnical engineering , algorithm , quantum mechanics , climatology , physics
The U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Division is seeking to evaluate groundwater contamination resulting from 30 years of underground nuclear testing at the Nevada Test Site (NTS). This evaluation requires knowledge about what radioactive materials are in the groundwater and how they are transported through the underground environment. This information coupled with models of groundwater flow (flow paths and flow rates) will enable predictions of the arrival of each radionuclide at a selected receptor site. Risk assessment models will then be used to calculate the expected environmental and human doses. The accuracy of our predictions depends on the validity of our hydrologic and risk assessment models and on the quality of the data for radionuclide concentrations in ground water at each underground nuclear test site. This paper summarizes what we currently know about radioactive material in NTS groundwater and suggests how we can best use our limited knowledge to proceed with initial modeling efforts. The amount of a radionuclide available for transport in groundwater at the site of an underground nuclear test is called the hydrologic source term. The radiologic source term is the total amount of residual radionuclides remaining after an underground nuclear test. The hydrologic source term is smaller than the radiologic source term because some or most of the radionuclide residual cannot be transported by groundwater. The radiologic source term has been determined for each of the underground nuclear tests fired at the NTS; however, the hydrologic source term has been estimated from measurements at only a few sites

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom