Exploring the Feasibility of Fabricating Micron-Scale Components Using Microcontact Printing LDRD Final Report
Author(s) -
Ramona Myers,
M.B Ritchey,
Robert Stokes,
Adrian L. Casias,
David H. Adams,
ANDREW OLIVER,
John A. Emerson
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/820892
Subject(s) - microcontact printing , microfabrication , microelectronics , nanotechnology , materials science , transfer printing , substrate (aquarium) , fabrication , pdms stamp , computer science , medicine , oceanography , alternative medicine , pathology , geology , composite material
Many microfabrication techniques are being developed for applications in microelectronics, microsensors, and micro-optics. Since the advent of microcomponents, designers have been forced to modify their designs to include limitations of current technology, such as the inability to make three-dimensional structures and the need for piece-part assembly. Many groups have successfully transferred a wide variety of patterns to both two-dimensional and three-dimensional substrates using microcontact printing. Microcontact printing is a technique in which a self-assembled monolayer (SAM) is patterned onto a substrate by transfer printing. The patterned layer can act as an etch resist or a foundation upon which to build new types of microstructures. We created a gold pattern with features as small as 1.2 {micro}m using microcontact printing and subsequent processing. This approach looks promising for constructing single-level structures such as microelectrode arrays and sensors. It can be a viable technique for creating three-dimensional structures such as microcoils and microsprings if the right equipment is available to achieve proper alignment, and if a means is available to connect the final parts to other components in subsequent assembly operations. Microcontact printing provides a wide variety of new opportunities in the fabrication of microcomponents, and increases the options of designers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom