Computational Chemistry and Reaction Engineering Workbench
Author(s) -
J. Thomas McKin
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/820562
Subject(s) - workbench , process engineering , chemical process , suite , chemical reactor , combustion , pyrolysis , raw material , chemical industry , process (computing) , chemical reaction , computer science , nuclear engineering , waste management , environmental science , chemistry , chemical engineering , engineering , mechanical engineering , environmental engineering , organic chemistry , archaeology , visualization , history , operating system
The chemical process industries are among the most energy intensive in the US. While much of the energy use cannot be avoided, (e.g., feedstock energy or separations costs), there are tremendous gains to be had through simulation-based optimizations. The heart of any chemical operation is the chemical reactor and it is here that gains can be made either directly (e.g., reduced heat flux) or indirectly (e.g., reduced downstream separations cost due to more efficient reactor design). The objective of this project was to develop an integrated suite of software to facilitate the simulation and optimization of chemical reactors. In the phase of the project supported by this grant, we focused specifically on gas-phase chemical processes such as combustion and pyrolysis
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom