z-logo
open-access-imgOpen Access
HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE
Author(s) -
J.A. Guin,
Ganesh Ramakrishnan,
Keiji Asada,
Brian J. Mosley
Publication year - 2000
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/816521
Subject(s) - asphaltene , diffusion , toluene , adsorption , solvent , chemistry , petroleum , carbon fibers , inert gas , inert , catalysis , petroleum product , thermodynamics , chemical engineering , work (physics) , organic chemistry , chromatography , materials science , composite material , physics , composite number , engineering
During this time period work proceeded in two main areas, the performance and analysis of petroleum asphaltene diffusional uptake experiments at 325 C and the preparation and testing of some new carbon based catalysts. In the first area, we performed studies of the diffusion controlled uptake of petroleum asphaltenes into a porous carbon catalyst at 325 C. The experiments were performed under an inert He atmosphere using 1-methylnaphthalene as a solvent. These purpose of these experiments was to extend our previous data which was taken and reported in the prior semi-annual report. These previous experiments were performed only up to a temperature of 250 C. A comparison between the experimental data and model simulated data showed that the mathematical model satisfactorily fitted the adsorptive diffusion of the petroleum asphaltenes onto the porous carbon at 325 C. Comparing with previous results, the adsorption constant continued to decrease with an increase in temperature for the petroleum asphaltene/1-methylnaphthalene system. Also during this time period, some carbon catalyst supports were prepared in our laboratory and several sets of data were obtained in adsorption-diffusion uptake experiments using a petroleum asphaltene with toluene as solvent. These data are presented in this report, although, complete fitting of the data with the mathematical model has not yet been performed. These calculations will be performed during the next time period

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom