Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas
Author(s) -
D. S. Clark,
N. J. Fisch
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/814693
Subject(s) - raman amplification , laser , plasma , ionization , raman scattering , atomic physics , instability , raman spectroscopy , pulse (music) , opacity , physics , amplifier , optics , ion , optoelectronics , nuclear physics , cmos , quantum mechanics , detector , mechanics
By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I {approx} 10{sup 17} W/cm{sup 2} by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom