Hints for Enhanced b -> sg From Charm and Kaon Counting
Author(s) -
Johan Rathsman
Publication year - 2003
Publication title -
high energy physics - phenomenology
Language(s) - English
Resource type - Reports
DOI - 10.2172/813098
Subject(s) - physics , bar (unit) , particle physics , multiplicity (mathematics) , charm (quantum number) , branching fraction , nuclear physics , geometry , mathematics , meteorology
Previously, motivation for enhanced b {yields} sg from new flavor physics has centered on discrepancies between theory and experiment. Here two experimental hints are considered: (1) updated measurements of the charm multiplicity and {Beta}({bar B} {yields} X{sub c{bar c}s}) at the {Upsilon}(4S) imply {Beta}(B {yields} X{sub no charm}) {approx} 12.4 {+-} 5.6%, (2) the {bar B} {yields} K{sup -}X and {bar B} {yields} K{sup +}/K{sup -}X branching fractions are in excess of conventional {bar B} {yields} X{sub c} {yields} KX yields by about 16.9 {+-} 5.6% and 18 {+-} 5.3%, respectively. JETSET 7.4 was used to estimate kaon yields from s{bar s} popping in {bar B} {yields} X{sub c{bar u}d} decays. JETSET 7.4 Monte Carlos for {Beta}({bar B} {yields} X{sub sg}) {approx} 15% imply that the additional kaon production would lead to 1{sigma} agreement with observed charged and neutral kaon yields. The K{sub s} momentum spectrum would be consistent with recent CLEO bounds in the end point region. Search strategies for enhanced b {yields} sg are discussed in light of large theoretical uncertainty in the standard model fast kaon background from b {yields} s penguin operators.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom