Characterization of high performance electrochemical systems for portable power. Final report for period September 15, 1993 - December 31, 2001
Author(s) -
W. H. Smyrl,
Boone B. Owens
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/808725
Subject(s) - anode , battery (electricity) , characterization (materials science) , lithium (medication) , amorphous solid , materials science , aerogel , electrochemistry , high energy , energy storage , lithium battery , nanotechnology , electrode , power (physics) , engineering physics , chemistry , physics , ion , crystallography , thermodynamics , organic chemistry , ionic bonding , medicine , endocrinology
The long-term objective of research has been to perform the enabling materials research necessary for the development of a battery oriented to the consumer market with special requirements in terms of safety, cycling life, and high specific energy and power. We have discovered novel processing of V{sub 2}O{sub 5} gels that leads to aerogel (ARG) and xerogel (XRG) films with specific energy and Li insertion capacity that are much higher than for other amorphous or crystalline forms of V{sub 2}O{sub 5}. We have also found that the new materials will host Mg{sup +2} and other cations which should be the basis for novel high-energy, high-power consumer battery systems. The investigation has examined (1) low-temperature synthesis of V{sub 2}O{sub 5} aerogel host materials, (2) characterization of insertion of Mg{sup 2+}, Zn{sup 2+}, and Al{sup 3+} into the V{sub 2}O{sub 5} hosts, (3) anode materials for the new systems, and alternate anode materials to replace the intrinsically unsafe lithium metal for lithium batteries, and (4) the feasibility of safer, nonaqueous, high-performance battery designs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom