z-logo
open-access-imgOpen Access
Batch Microreactor Studies of Lignin Depolymerization by Bases. 1. Alcohol Solvents
Author(s) -
James D. Miller,
LINDSEY EVANS,
ALICIA LITTLEWOLF,
Daniel E. Trudell
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/800959
Subject(s) - depolymerization , lignin , biofuel , microreactor , process engineering , chemistry , renewable energy , biomass (ecology) , catalysis , waste management , pulp and paper industry , chemical engineering , organic chemistry , engineering , oceanography , electrical engineering , geology
Biomass feedstocks contain roughly 10-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels (ethanol) assume that the lignin coproduct will be utilized as boiler fuel to provide heat and power to the process. However, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller molecular units. From fiscal year 1997 through fiscal year 2001, Sandia National Laboratories was a participant in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to utilize rapidly heated batch microreactors to perform kinetic studies, examine the reaction chemistry, and to develop alternate catalyst systems for the BCD process. This report summarizes the work performed at Sandia during FY97 and FY98 with alcohol based systems. More recent work with aqueous based systems will be summarized in a second report

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom