z-logo
open-access-imgOpen Access
Thermal Response of Tritiated Co-deposits from JET and TFTR to Transient Heat Pulses
Author(s) -
C.H. Skinner,
N. Bekrisl,
J.P. Coad,
Carmelo Gentile,
A. Hassanein,
R.D. Reiswig,
S. Willms
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/798185
Subject(s) - materials science , joint european torus , tokamak , plasma , thermal conductivity , heat flux , composite material , substrate (aquarium) , fusion power , graphite , laser , analytical chemistry (journal) , optics , heat transfer , chemistry , nuclear physics , thermodynamics , oceanography , physics , geology , chromatography
High heat flux interactions with plasma-facing components have been studied at microscopic scales. The beam from a continuous wave neodymium laser was scanned at high speed over the surface of graphite and carbon fiber composite tiles that had been retrieved from TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) after D-T plasma operations. The tiles have a surface layer of amorphous hydrogenated carbon that was co-deposited during plasma operations, and laser scanning has released more than 80% of the co-deposited tritium. The temperature rise of the co-deposit was much higher than that of the manufactured material and showed an extended time history. The peak temperature varied dramatically (e.g., 1,436 C compared to >2,300 C), indicating strong variations in the thermal conductivity to the substrate. A digital microscope imaged the co-deposit before, during, and after the interaction with the laser and revealed 100-micron scale hot spots during the interaction. Heat pulse durations of order 100 ms resulted in brittle destruction and material loss from the surface, whilst a duration of =10 ms showed minimal changes to the co-deposit. These results show that reliable predictions for the response of deposition areas to off-normal events such as ELMs (edge-localized modes) and disruptions in next-step devices need to be based on experiments with tokamak generated co-deposits

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom