On Properties of Compressional Alfven Eigenmode Instability Driven by Superalfvinic Ions
Author(s) -
Н. Н. Гореленков,
C.Z. Cheng
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/795785
Subject(s) - cyclotron , physics , atomic physics , joint european torus , tokamak , ion cyclotron resonance , harmonics , instability , fourier transform ion cyclotron resonance , plasma , ion , cyclotron resonance , electron , nuclear physics , mechanics , quantum mechanics , voltage
Properties of the instability of Compressional Alfven Eigenmodes (CAE) in tokamak plasmas are studied in the cold plasma approximation with an emphasis on the instability driven by the energetic minority Ion Cyclotron Resonance Heating (ICRH) ions. We apply earlier developed theory [N.N. Gorelenkov and C.Z. Cheng, Nuclear Fusion 35 (1995) 1743] to compare two cases: Ion Cyclotron Emission (ICE) driven by charged fusion products and ICRH Minority driven ICE (MICE) [J. Cottrell, Phys. Rev. Lett. (2000)] recently observed on JET [Joint European Torus]. Particularly in MICE spectrum, only instabilities with even harmonics of deuterium-cyclotron frequency at the low-field-side plasma edge were reported. Odd deuterium-cyclotron frequency harmonics of ICE spectrum between the cyclotron harmonics of protons can be driven only via the Doppler-shifted cyclotron wave-particle resonance of CAEs with fusion products, but are shown to be damped due to the electron Landau damping in experiments on MI CE. Excitation of odd harmonics of MICE with high-field-side heating is predicted. Dependencies of the instability on the electron temperature is studied and is shown to be strong. Low electron temperature is required to excite odd harmonics in MICE
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom