z-logo
open-access-imgOpen Access
Novel Analytical Techniques Based on a Enhanced Electron Attachment Process - Final Report - 09/15/1996 - 06/15/2001
Author(s) -
Lal A. Pinnaduwage,
Michelle V. Buchanan
Publication year - 2001
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/790365
Subject(s) - excited state , analyte , chemistry , ionization , ion , electron , molecule , electron capture , electron ionization , mass spectrometry , ground state , atomic physics , analytical chemistry (journal) , chromatography , organic chemistry , physics , quantum mechanics
Present analytical methodologies for the detection of chlorinated compounds important to DOE's environmental restoration program, such as DNAPLs [dense non-aqueous phase liquids - such as carbon tetrachloride, trichloroethylene (TCE), perchloroethylene (PCE)], polychlorinated biphenyls (PCB), and others, involve detection by negative-ion-based analytical techniques. These techniques exploit electron attachment to analyte molecules in their ground electronic states, and are limited to particular compounds with appropriate electron capture cross sections. For example, PCB contamination is detected by analysis of mixtures of chlorinated homologues of these biphenyls. Homologues with lower numbers of chlorines do not efficiently attach thermal electrons and thus are not detected by either electron capture chromatographic detectors or by negative ion chemical ionization mass spectrometry. We proposed three novel analytical techniques based on enhanced negative-ion formation via electron attachment to highly-excited electronic states of molecules. In one of the proposed techniques, the excited states of the (analyte) molecules are populated via laser excitation; the resulting negative ions are mass analyzed for identification. The other two proposed techniques utilize a specialized gas discharge for the formation of excited species (and low-energy electrons for attachment), and thus will provide a cost-effective method if successful. In one version, the negative ions will be mass analyzed -as in the laser-based technique- and in the other, the decrease in electron density due to excited state attachment will be monitored (electron capture detector mode). A plasma mixing scheme will be employed to excite the analyte molecules so that the excited states of the analyte molecules will not be destroyed by the discharge

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom