z-logo
open-access-imgOpen Access
Breakup of metal jets penetrating a volatile liquid. Final report, October 1, 1991--February 28, 1993
Author(s) -
J.P. Schneider
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/79023
Subject(s) - plenum space , breakup , coolant , mechanics , jet (fluid) , liquid metal , penetration (warfare) , materials science , break up , nozzle , leading edge , head (geology) , nuclear physics , physics , thermodynamics , composite material , geology , engineering , geomorphology , operations research
In a loss of coolant accident, the core may become uncovered, causing the fuel pins to melt. The molten fuel would pour onto the plenum and collect on the reactor pressure vessel (RPV) lower head. The RPV internal structure includes one or more perforated plates in the lower plenum which would divide the molten fuel into small diameter streams or jets, which would break up as they penetrate the coolant in the lower plenum. The breakup of these jets would occur in two phases, each dominated by a distinct fragmentation mechanism. As a fuel jet first penetrates the coolant, a stagnation flow develops at its leading edge, causing the column to spread radially and eject molten fuel into the coolant. The jet fluid in the column is fragmented by pressure fluctuations due to the jet/ambient fluid relative motion, so that a steady jet is reduced to a field of falling drops below a critical depth called the breakup length. The present work includes analyses yielding simple correlations for jet breakup length and jet leading edge penetration

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom