
Developing a CD-CBM Anticipatory Approach for Cavitation - Defining a Model-Based Descriptor Consistent Across Processes, Phase 1 Final Report Context-Dependent Prognostics and Health Assessment: A New Paradigm for Condition-based Maintenance SBIR Topic No. N98-114
Author(s) -
Glenn O. Allgood,
W.B. Dress,
Stephen W. Kercel
Publication year - 1999
Language(s) - English
Resource type - Reports
DOI - 10.2172/7818
Subject(s) - prognostics , context (archaeology) , salient , process (computing) , computer science , cavitation , reliability engineering , condition monitoring , failure mode and effects analysis , focus (optics) , artificial intelligence , data mining , engineering , physics , paleontology , mechanics , biology , electrical engineering , optics , operating system
The objective of this research, and subsequent testing, was to identify specific features of cavitation that could be used as a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor is based on the physics of the phenomena, capturing the salient features of the process dynamics. The test methodology and approach were developed to make the cavitation features the dominant effect in the process and collected signatures. This would allow the accurate characterization of the salient cavitation features at different operational states. By developing such an abstraction, these attributes can be used as a general diagnostic for a system or any of its components. In this study, the particular focus will be pumps. As many as 90% of pump failures are catastrophic. They seem to be operating normally and fail abruptly without warning. This is true whether the failure is sudden hardware damage requiring repair, such as a gasket failure, or a transition into an undesired operating mode, such as cavitation. This means that conventional diagnostic methods fail to predict 90% of incipient failures and that in addressing this problem, model-based methods can add value where it is actually needed