z-logo
open-access-imgOpen Access
PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS
Author(s) -
Ms. Xiaolei Sun,
Professor George W. Roberts
Publication year - 2000
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/781794
Subject(s) - thermal conductivity detector , flame ionization detector , chemistry , catalysis , hydrogen , zinc , carbon monoxide , gas chromatography , carbon fibers , chromatography , detector , chromite , analytical chemistry (journal) , materials science , organic chemistry , composite number , composite material , optics , physics
Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom