Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes - Final Report
Author(s) -
Franklin W. Schwartz
Publication year - 2000
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/775438
Subject(s) - permanganate , chemistry , phase (matter) , degradation (telecommunications) , catalysis , phase transfer catalyst , solubilization , aqueous solution , redox , chemical engineering , inorganic chemistry , organic chemistry , computer science , telecommunications , biochemistry , engineering
This study provides a detailed process-level understanding of the oxidative destruction of the organic contaminant emphasizing on reaction pathways and kinetics. A remarkable rise in the MnO{sup {minus}} consumption rate with TCA and PCE mixtures proves that the phase transfer catalysts have the ability to increase oxidation rate of DNAPLs either in pure phase or mixtures and that there is significant potential for testing the catalyzed scheme under field conditions. Secondly, as an attempt to enhance the oxidation of DNAPL, we are trying to exploit cosolvency effects, utilizing various alcohol-water mixtures to increase DNAPL solubilization. Preliminary results of cosolvency experiments indicate the enhancement in the transfer of nonaqueous phase TCE to TBA-water solution and the rate of TCE degradation in aqueous phase
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom