z-logo
open-access-imgOpen Access
MICROWAVE COMBUSTION AND SINTERING WITHOUT ISOSTATIC PRESSURE
Author(s) -
Ph.D. M.A. Ebadian
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/772506
Subject(s) - hazardous waste , plutonium , radioactive waste , waste management , uranium , microwave , combustion , environmental science , process engineering , materials science , nuclear engineering , engineering , chemistry , radiochemistry , metallurgy , telecommunications , organic chemistry
This project is devoted to the development of an innovative technique for the disposal of mixed waste utilizing microwave energy. Because most uranium and plutonium components as well as most fission products have dielectric properties that allow excellent microwave and high-frequency energy coupling, dielectric heating has the potential for application in many processes for treating hazardous wastes. This technology, whether used on its own or as hybrid in conjunction with a conventional process, has positive features, such as energy efficiency. increased throughput, volume reduction, and reduction of disposal and transportation cost, and provides a technique not feasible by conventional means. The hazardous waste will be converted into a dense, stable, and vitrified form so that it may qualify for eventual off-site disposal. If successful, this program will lead to major cost saving for the DOE system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom