z-logo
open-access-imgOpen Access
CRADA No. BNL-C-97-10 between BNL and Cotton, Inc. Final abstract and final report [Final Report of Research carried out under DOE CRADA No. BNL-C-97-10 - "Prediction of Yield in Cotton"]
Publication year - 2000
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/770448
Subject(s) - cultivar , fiber , lint , horticulture , mathematics , biology , agronomy , materials science , composite material
The objectives of this work were to determine if the numbér of fiber cell initials varied genetically and to compare the number of initials with that of mature fibers obtained at harvest time. The method used to count the number of fiber cell initials is direct, simple, quick and done while the plant is growing. In contrast, the currently used commercial process is indirect and needs large amount mature fibers gathered at harvest time. However, all current work on cotton yield is based on fiber numbers obtained by the indirect commercial process. Consequently, it was necessary to compare results obtained from the two methods using the same plants as the source of material. The results show that the number of fiber initials per ovule differed significantly (P>0.05) for seven cultivars in 1995 and 1996. AIso, a 1997 study shows the number of fiber initials varied by 15% over boll positions and environments, with rankings among cultivars generally consistent across boll positions and sampling times. Finally, although there were differences among cultivars for initial fiber cell number, all cultivars had nearly the same number of mature lint fibers per seed. This last finding is significant. It indicates that the rate of fiber cell initiation varies among cultivars; the lower the rate, the greater the difference between the number of initials and the number of mature fiber cells. If the rate of fiber initiation is relatively high, the number of initials and mature fibers differs by about 11%; if it is low, the difference is as high as 31%. Cotton breeders may be able to use genetic differences for the number of fiber initials and/or the rate of fiber cell initiation in crop improvement programs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom