z-logo
open-access-imgOpen Access
Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow
Author(s) -
C. Nash
Publication year - 2000
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/759143
Subject(s) - strontium , permanganate , precipitation , chemistry , hanford site , human decontamination , radium , radioactive waste , radiochemistry , nuclear chemistry , waste management , inorganic chemistry , physics , organic chemistry , meteorology , engineering
Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom