Optical constants of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} lattice-matched to GaSb(001): Experiment and modeling
Author(s) -
G.W. Charache,
Mu,
Kaya Wei,
Fred H. Pollak,
J. L. Freeouf,
C. A. Wang
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/754937
Subject(s) - exciton , physics , electronic structure , spectral line , band gap , electronic band structure , energy (signal processing) , lattice constant , condensed matter physics , atomic physics , optics , quantum mechanics , astronomy , diffraction
The optical constants {epsilon}(E)[={epsilon}{sub 1}(E)+i{epsilon}{sub 2}(E)] of two epitaxial layers of GaInAsSb/GaSb have been measured at 300 K using spectral ellipsometry in the range of 0.35--5.3 eV. The {epsilon}(E) spectra displayed distinct structures associated with critical points (CPs) at E{sub 0} (direct gap), spin-orbit split E{sub 0}+{Delta}{sub 0} component, spin-orbit split (E{sub 1}, E{sub 1}+{Delta}{sub 1}) and (E{sub 0}{prime}, E{sub 0}{prime}+{Delta}{sub 0}{prime}) doublets, as well as E{sub 2}. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holder model dielectric function [Phys.Rev.B 56, 4037 (1997)] based on the electronic energy-band structure near these CPs plus excitonic and band-to-band Coulomb enhancement effects at E{sub 0.}, E{sub 0}+{Delta}{sub 0} and the E{sub 1}, E{sub 1}+{Delta}{sub 1} doublet. In addition to evaluating the energies of these various band-to-band CPs, information about the binding energy (R{sub 1}) of the two-dimensional exciton related to the E{sub 1}, E{sub 1}+{Delta}{sub 1} CPs was obtained. The value of R{sub 1} was in good agreement with effective mass/k{sup {rightharpoonup}}{center_dot}p{sup {rightharpoonup}} theory. The ability to evaluate R{sub 1} has important ramifications for recent first-principles band structure calculations which include exciton effects at E{sub 0}, E{sub 1}, and E{sub 2} [M.Rohlfing and S.G.Louie, Phys.Rev.Lett. 81, 2312 (1998) and S. Albrecht et al., Phys.Rev.Lett. 80, 4510 (1998)]. The experimental absorption coefficients in the region of E{sub 0} were in good agreement with values obtained from a linear interpolation of the end point materials. The experimental results were compared to a recent evaluation and fitting (Holden model) of the optical constants of GaSb
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom