z-logo
open-access-imgOpen Access
Evaluation of prompt fission gamma rays for use in simulating nuclear safeguard measurements
Author(s) -
T.E. Valentine
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/753485
Subject(s) - fission , prompt neutron , fissile material , gamma ray , multiplicity (mathematics) , nuclear physics , fission products , neutron , physics , neutron temperature , delayed neutron , mathematics , mathematical analysis
Nondestructive assay methods that rely on measurement of correlated gamma rays from fission have been proposed as a means to determine the mass of fissile materials. Sensitivity studies for such measurements will require knowledge of the multiplicity of prompt gamma rays from fission; however, a very limited number of multiplicity distributions have been measured. A method is proposed to estimate the average number of gamma rays from any fission process by using the correlation of neutron and gamma emission in fission. Using this method, models for the total prompt gamma ray energy from fission adequately reproduce the measured value for thermal neutron induced fission of {sup 233}U. Likewise, the average energy of prompt gamma rays from fission has been adequately estimated using a simple linear model. Additionally, a method to estimate the multiplicity distribution of prompt gamma rays from fission is proposed based on a measured distribution for {sup 252}Cf. These methods are only approximate at best and should only be used for sensitivity studies. Measurements of the multiplicity distribution of prompt gamma rays from fission should be performed to determine the adequacy of the models proposed in this article

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom