z-logo
open-access-imgOpen Access
CONTROL OF TRACE METAL EMISSIONS DURING COAL COMBUSTION
Author(s) -
THOMAS C HO
Publication year - 1998
Language(s) - English
Resource type - Reports
DOI - 10.2172/7532
Subject(s) - coal , combustion , coal combustion products , waste management , combustor , environmental science , trace metal , pollution , mercury (programming language) , volatilisation , air pollution , environmental chemistry , metal , chemistry , materials science , engineering , metallurgy , computer science , ecology , programming language , organic chemistry , biology
Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. This final technical report details the work performed, the conclusions obtained, and the accomplishments achieved over the project performance period from July 1, 1994 through December 31, 1997. Specifically, this report consists of the following five chapters: Chapter 1. Executive Summary; Chapter 2. Metal Capture by Various Sorbents; Chapter 3. Simultaneous Metal and Sulfur Capture; Chapter 4. Sorption and Desorption of Mercury on Sorbents; and Chapter 5. Project Conclusions. In summary, the metals involved in the project were arsenic, cadmium, chromium, lead, mercury and selenium and the sorbents tested included bauxite, zeolite and calcined limestone. The three sorbents have been found to have various degree of metal capture capability on arsenic, cadmium, chromium and lead. Among them, calcined limestone is capable of simultaneouely capturing metals and sulfur. Mercury and selenium, however, can not be effectively retained by these sorbents under the combustion conditions. Mercury adsorption by sorbents at low temperatures was also investigated and the developed mass transfer model for mercury absorption appears to describe reasonably well the experimental results. Overall, the project has generated 18 presentations and/or publications in professional conferences and journals

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here