z-logo
open-access-imgOpen Access
Indoor Environment Program - 1996 Annual Report
Author(s) -
Indoor Environment Program
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/7283
Subject(s) - environmental science , payback period , particle (ecology) , ecology , biology , macroeconomics , production (economics) , economics
The forty-five chemists, physicists, biologists, architects, engineers, staff, and students of the Indoor Environment Program are all working to solve the problems of indoor air quality, health, comfort, and energy use associated with the indoor environment. A common thread throughout this work is the importance of ventilation--both for its role in supporting human health and comfort as well as for its liability in requiring large amounts of energy to heat and cool it. The importance of understanding these interactions can be illustrated by two examples: the health and productivity of workers (Fisk and Rosenfeld, 1996) and the performance of sensitive equipment in clean room environments (Faulkner, et d., 1996). During the past year, we estimated the magnitudes of health and productivity gains that may be obtained by providing better indoor environments. The ratio of the potential financial benefits of improving indoor environments to the costs of the improvements ranges between 20 and 50. A second example is from our Clean Room Energy Efficiency Study: Clean rooms utilize large amounts of electricity to operate fans that recirculate air at very high flow rates through particle filters. Usually, the fans operate continuously at full speed, even when the clean room is unused. To reduce the energy use in a research clean room, the rate of air recirculation was controlled in response to real-time measurements of particle concentration. With this new control system, fan energy use decreased by 65% to 85% while maintaining particle concentrations below the allowable limits except during occasional one-minute periods. The estimated payback period for this technology is one to four years

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom