z-logo
open-access-imgOpen Access
Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Progress report
Author(s) -
Fiona M. Doyle
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/71641
Subject(s) - coal , pyrite , chemistry , aqueous solution , chemical engineering , ion , ion exchange , partition (number theory) , oxidation state , precipitation , metal , mineralogy , inorganic chemistry , organic chemistry , physics , mathematics , combinatorics , meteorology , engineering
The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the eighteenth quarter has focused on severe oxidation of coal by thermal and chemical treatment, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior is being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments, for example, whether partition occurs by an ion-exchange mechanism, or whether the surface is capable of changing the oxidation state of metallic species, with concurrent surface or bulk precipitation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom