z-logo
open-access-imgOpen Access
Processing and properties of molybdenum silicide intermetallics containing boron
Author(s) -
J.H. Schneibel,
C.T. Liu,
L. Jr. Heatherly,
C.A. Carmichael
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/676876
Subject(s) - intermetallic , materials science , hot isostatic pressing , alloy , molybdenum , fracture toughness , brittleness , metallurgy , silicide , boron , composite material , silicon , chemistry , organic chemistry
The processing and mechanical properties of Mo-Si-B intermetallic alloys with compositions Mo-26.7Si-7.3B and Mo-12Si-8.5B (at.%) were investigated. The first alloy consisted of the phases Mo{sub 3}Si, Mo{sub 5}Si{sub 3} (T1) and Mo{sub 5}SiB{sub 2} (T2). Attempts to extrude castings of this alloy at 1700 or 1800 C were not successful. Hot isostatic pressing of elemental powders was more promising and room temperature flexure strengths on the order of 200 MPa were reached. The second alloy with the composition Mo-12Si-8.5B could be readily cast and consisted of {alpha}-Mo inclusion in a brittle matrix of Mo{sub 3}Si and T2. A heat treatment of 1 day at 1600C in vacuum improved the room temperature strength and fracture toughness. Values on the order of 500 MPa and 10 MPa m{sup 1/2}, respectively, were obtained. Consistent with ductile phase toughening, limited plastic deformation as well as debonding of the {alpha}-Mo inclusions were seen on fracture surfaces

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom