Experimental and analytical investigations of flows in porous media. Final report, August 15, 1993--August 15, 1996
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/674799
Subject(s) - convection , vorticity , rayleigh number , mechanics , physics , vortex , geology , geometry , natural convection , mathematics
This report consists first of a discussion of specific results. Following that is a discussion of important issues. During the period July 1993--present, the authors have developed Magnetic Resonance Imaging (MRI) and other experimental techniques for the study of porous flow (Section 1). These techniques include fast spin echo methods and precision temperature control and measurements systems for use in the MRI environment. They have applied these techniques to extensive studies of Porous Media Convection (PMC) which they discuss below. Sections 2--4 summarize important experimental results, and Section 5 lists publications and related information. These studies clearly point to the need for improved models for porous flow. In related studies using a special kind of shadowgraph technique, they found corroborating support for the effects of microstructure on PMC and the need for improved models of porous flow, and of PMC in particular. They initially studied convective flows for pure fluids (water), and more recently, they have begun studies of miscible binary mixtures
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom