
Risk assessment of mixed waste sites
Author(s) -
D.F. Montague,
G.A. Holton,
C.M. King
Publication year - 1987
Language(s) - English
Resource type - Reports
DOI - 10.2172/665994
Subject(s) - remedial action , groundwater , environmental science , risk assessment , closure (psychology) , savannah river site , waste management , hazardous waste , human health , work (physics) , environmental planning , radioactive waste , contamination , engineering , environmental remediation , environmental health , ecology , medicine , mechanical engineering , geotechnical engineering , computer security , computer science , economics , market economy , biology
As part of its ongoing efforts to ensure environmental regulation compliance at DOE facilities, DOE published on April 26, 1985, a notice of intent to write an Environmental Impact Statement on Waste Management Activities for Groundwater Protection (Groundwater EIS) at the Savannah River Plant (SRP). To perform a human health risk assessment of each waste site for each closure action considered, DuPont organized a project team led by personnel from the Savannah River Laboratory (SRL) and supported by outside contractors specializing in risk assessment work. As part of that team, JBF Associates, Inc. (JBFA) performed an atmospheric containment transport analysis and human health risk assessment of nonradioactive contaminants from SRP waste sites. For each waste site, three closure actions were examined: (1) excavate the site, backfill it, and cap it followed by regular groundwater monitoring (Option 1); (2) backfill and cap the site followed by regular groundwater monitoring (Option 2); and (3) no remedial action, regular groundwater monitoring, and some site maintenance work (Option 3). The human health risk assessment performed by JBFA estimated the public and worker risks from contaminants released to the atmosphere from each waste site for each closure option. This paper first presents the methodology JBFA used to estimate the public and worker risks attributable to the inhalation and ingestion of airborne, nonradioactive contaminants. Following the description of the analysis methodology, the authors present the risk results for the waste sites that were due to atmospherically released nonradioactive contaminants. Both worker risks and public risks are presented. Finally, the authors present the results and conclusions derived from their analysis of the risk from airborne, nonradioactive contaminants