z-logo
open-access-imgOpen Access
Influence of surface defects and local structure on acid/base properties and oxidation pathways over metal oxide surfaces. Final report, June 1990--January 1997
Author(s) -
D.F. Cox
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/665931
Subject(s) - propene , adsorption , methanol , formic acid , inorganic chemistry , oxide , chemistry , carbon monoxide , formaldehyde , acetic acid , metal , brønsted–lowry acid–base theory , induction period , catalysis , organic chemistry
This final report covers work done during project period one and project period two. All the work in project period one was focused on the selective oxidation of oxygenated hydrocarbons over the SnO{sub 2}(110) single crystal surface. In project period two, the emphasis was on the acid/base properties of SnO{sub 2}(110) as well as two different Cu{sub 2}O single crystal surfaces. Prior to the summary of results, a description of these different surfaces is given as background information. Results are described for the dissociation and reaction of Bronsted acids (methanol, formic acid, water, formaldehyde, acetone, propene, acetic acid, and carbon monoxide). Results from project period two include: ammonia adsorption, CO{sub 2} adsorption, propene adsorption and oxidation, with tin oxides; complimentary work with copper oxides; and STM investigations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom