z-logo
open-access-imgOpen Access
Thermophysical properties of stainless steel foils
Author(s) -
K.E. Wilkes,
J.P. Strizak,
F. J. Weaver,
J. Besser,
Douglas Smith
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/658177
Subject(s) - materials science , thermal conductivity , thermal emittance , thermal resistance , composite material , doors , electrical resistivity and conductivity , thermal , thermal conduction , metallurgy , aluminium , ultra high vacuum , mechanical engineering , electrical engineering , thermodynamics , structural engineering , nanotechnology , beam (structure) , physics , engineering
Evacuated panel superinsulations with very high center-of-panel thermal resistances are being developed for use in refrigerators/freezers. Attainment of high resistances relies upon the maintenance of low vacuum levels by the use of stainless steel vacuum jackets. However, the metal jackets also present a path for heat conduction around the high resistance fillers. This paper presents results of a study of the impact of metal vacuum jackets on the overall thermal performance of vacuum superinsulations when incorporated into the walls and doors of refrigerators/freezers. Results are presented on measurements of the thermophysical properties of several types and thicknesses of stainless steel foils that were being considered for application in superinsulations. A direct electrical heating method was used for simultaneous measurements of the electrical resistivity, total hemispherical emittance, and thermal conductivity of the foils. Results are also presented on simulations of the energy usage of refrigerators/freezers containing stainless-steel-clad vacuum superinsulations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom