Summary of Tests to Determine Effectiveness of Gelatin Strike on SS{ampersand}C Dissolver Solutions
Author(s) -
Alice M. Murray,
D.G. Karraker
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/656909
Subject(s) - nitric acid , fluoride , gelatin , dissolution , chemistry , nuclear chemistry , chromatography , mineralogy , inorganic chemistry , organic chemistry
The solutions from the dissolution of sand, slag, and crucible (SS&C) material are sufficiently different from previous solutions processed via the F-Canyon Purex process that the effectiveness of individual process steps needed to be ascertained. In this study, the effectiveness of gelatin strike was tested under a variety of conditions. Specifically, several concentrations of silica, fluoride, nitric acid (HNO{sub 3}), boric acid (H{sub 3}BO{sub 3}), and aluminium nitrate nonahydrate (ANN) were studied. The disengagement times of surrogate and plant SS&C dissolver solutions from plant solvent also were measured. The results of the tests indicate that gelatin strike does not coagulate the silica at the low concentration of silica ({tilde 30} ppm) expected in the SS&C dissolver solutions because the silicon is complexed with fluoride ions (e.g., SiF{sub 6}{sup -2}). The silicon fluoride complex is expected to remain with the aqueous phase during solvent extraction. The disengagement times of the dissolver solutions from the plant solvent were not affected by the presence of low concentrations of silica and no third phase formation was observed in the disengagement phase with the low silica concentrations. Tests of surrogate SS&C dissolver solutions with higher concentration of silica (less than 150 ppm) did show that gelatin strike followed by centrifugation resulted in good phase disengagement of the surrogate SS{ampersand}C dissolver solution from the plant dissolver solution. At the higher silica concentrations, there is not sufficient fluoride to complex with the silica, and the silica must be entrained by the gelatin and removed from the dissolver solution prior to solvent extraction
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom