A portable battery-powered continuous airborne {sup 222}Rn sampler
Author(s) -
S.C. Scarpitta,
M. Kadnar
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/656453
Subject(s) - sorbent , relative humidity , liquid scintillation counting , chemistry , radiochemistry , humidity , sampling (signal processing) , analytical chemistry (journal) , environmental science , scintillation counter , carbon dioxide , adsorption , chromatography , meteorology , physics , organic chemistry , detector , optics
The Polyport, designed at the Environmental Measurements Laboratory (EML) for deployment in atmospheric balloons or remote areas, was laboratory and field tested to determine its effectiveness in collecting {sup 222}Rn gas in dry and humid air. Twelve 6-cm long tubes containing 0.4 g of Carboxen{trademark}-564 a hydrophobic beaded carbon molecular sieve (BCMS) material efficiently adsorbs airborne {sup 222}Rn under dynamic sampling conditions of 1--2 hr duration. The exposed sorbent is later weighed for water uptake, transferred and counted in a low background liquid scintillation (LS) counter that can detect alpha and beta emitting {sup 222}Rn progeny with a maximum counting efficiency of 5 cpm per dpm. Each sorbent tube can be gamma counted if it contains sufficient adsorbed {sup 214}Pb and {sup 214}Bi activity. The variables tested were sampling flow rate, temperature, sampling time and relative humidity (RH)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom