Solution processing of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films
Author(s) -
Amit Singhal,
M. Paranthaman,
E. D. Specht,
Rodney D. Hunt,
D. B. Beach,
P.M. Martin,
D.F. Lee
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/654193
Subject(s) - materials science , yttrium , yttrium barium copper oxide , epitaxy , thin film , sol gel , high temperature superconductivity , barium , transition temperature , analytical chemistry (journal) , crystallography , superconductivity , nanotechnology , oxide , condensed matter physics , chemistry , metallurgy , layer (electronics) , physics , chromatography
The aim of this work was to develop a non-vacuum chemical deposition technique for YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) coated conductors on rolling-assisted biaxially textured substrates (RABiTS). The authors have chosen the metal-organic decomposition (MOD) and sol-gel precursor routes to grow textured YBCO films. In the MOD process, yttrium 2-ethylhexonate, barium neodecanoate, copper 2-ethylhexonate and toluene were used as the starting reagents. YBCO films processed by the MOD method on SrTiO{sub 3} (100) single crystal substrates were consisted of c and a-axis oriented materials. These films also contained some amount of the random phase. The c and a-axis oriented materials were epitaxial on SrTiO{sub 3} substrates. Films have a T{sub c,onset} of 89K and the best superconducting transition temperature of 63K. Films pyrolyzed at 525 C and subsequently annealed at 780 C in a p(O{sub 2}) of 3.5 {times} 10{sup {minus}4} atm contained YBCO phase predominantly in a-axis orientation. In the sol-gel route, yttrium-isopropoxide, barium metal, copper methoxide and 2-methoxyethanol were used as the starting reagents. Sol-gel YBCO films on SrTiO{sub 3} substrates were epitaxial and c-axis oriented
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom