z-logo
open-access-imgOpen Access
Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy
Author(s) -
M. G. Osborne
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/653960
Subject(s) - materials science , eutectic system , inert gas , metallurgy , alloy , particle (ecology) , liquid metal , microstructure , melt spinning , molten metal , particle size , metal , inert , spinning , composite material , chemical engineering , chemistry , oceanography , organic chemistry , engineering , geology
A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100--1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom