z-logo
open-access-imgOpen Access
Tunable Composite Membranes for Gas Separations.
Author(s) -
J P Ferraris,
Jr Balkus,
I H Musselman
Publication year - 1997
Language(s) - English
Resource type - Reports
DOI - 10.2172/644664
Subject(s) - membrane , analytical chemistry (journal) , scanning electron microscope , permeability (electromagnetism) , materials science , chemistry , crystallography , chromatography , composite material , biochemistry
Solution cast membranes of poly(3-dodecylthiophene) (PDDT) were studied for the room temperature separation of N{sub 2}, 0{sub 2}, and C0{sub 2} procedure for fabricating reproducible, smooth, uniformly thick (-35-pm), defect-free membranes was established. Permeability values were measured for as-cast PDDT membranes (PO{sub 2} = 9.4, PN{sub 2} = 20.2, PCO{sub 2} = 88. 2 Barrers) and selectivity values were calculated (XO{sub 2}/N{sub 2} = 2.2, XC0{sub 2}/N{sub 2} = 9.4). Chemically induced doping (-23%) with SbCI5 resulte in a decrease in permeability (PN{sub 2} = 3.5, P0{sub 2} =10.5, PCO{sub 2} = 48.5 Barrers) and a corresponding increase in permselectivity (X 0{sub 2}/N{sub 2} = 0, (xCO{sub 2}/N{sub 2} =14.0)). Membrane undoping with hydrazine partially reversed these trends (PN{sub 2} = 5.4, P0{sub 2} = 15.1, PCO{sub 2} = 62.9 Barrers), (XO{sub 2}/N{sub 2} = 2.8), (XCO{sub 2}/N{sub 2} =I 1. 6). The chemical composition cast, doped, and undoped PDDT membranes were determined using elemental analysis and energy dispersive x-ray spectrometry. Membrane microstructure was investigated by optical microscopy, TappingModeTM atomic force microscopy and scanning electron microscopy. The composition and microscopy results were correlated with changes in gas-transport properties. Two papers were presented at the Meeting of the North American Membranes Society, (June 2-4,1997, Baltimore, MD)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here