z-logo
open-access-imgOpen Access
Electric Power Research Institute: Environmental Control Technology Center
Publication year - 1996
Language(s) - English
Resource type - Reports
DOI - 10.2172/643576
Subject(s) - mercury (programming language) , elemental mercury , flue gas , fly ash , waste management , environmental science , environmental chemistry , catalysis , chemistry , engineering , computer science , organic chemistry , programming language
Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber and the Pulse-jet Fabric Filter). Testing also continued across the B&W/CHX Heat Exchanger this month as the effects of increased particulate loading are being studied. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. Testing in October at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC) included tests from the Pilot Trace Elements Removal (TER) test block as part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions. The 1996 program is being performed on the 4.0 MW wet FGD pilot unit and the spray dryer/pulse jet fabric filter (SDA/PJFF) pilot units. The 1996 Trace Elements Removal (TER) test block is a continuation of the 1995 TER test block and will focus on up to five research areas, depending on experimental results. These areas are: (1) Mercury speciation methods; (2) Effect of FGD system operating variables on mercury removal; (3) Novel methods for elemental mercury control; (4) Catalytic methods for converting elemental mercury to oxidized mercury; and (5) Electrostatic charging of particulate material in the FGD inlet flue gas stream. The work during October continued to focus on catalytic oxidation of elemental mercury. These tests included the evaluation of two different loadings of catalyst CT-9 (carbon-based material) over extended periods (8-10 days) and an evaluation of FAB-2B (bulk bituminous fly ash taken from the first hopper of the pilot ESP) for a four-day period. Three baseline tests were conducted for comparison with the catalyst tests

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here