z-logo
open-access-imgOpen Access
Slurry Phase Iron Catalysts for Indirect Coal LIquefaction.
Author(s) -
Abhaya K. Datye
Publication year - 1997
Language(s) - English
Resource type - Reports
DOI - 10.2172/643300
Subject(s) - catalysis , slurry , coal liquefaction , materials science , chemical engineering , precipitation , liquefaction , particle size , coal , phase (matter) , temperature programmed reduction , particle (ecology) , metallurgy , mineralogy , chemistry , waste management , composite material , engineering , organic chemistry , geology , physics , meteorology , oceanography
This report covers the fourth six month period of this three year grant under the University Coal Research program. During this period, we have begun the synthesis of precipitated catalysts using a bench-top spray dryer. The influence of binders on particle strength was also studied using the ultrasonic fragmentation approach to derive particle breaking stress. A similar approach was used to derive particle strength of catalysts obtained from Mr. Robert Gormley at FETC. Over the next six month period, this work will be continued while the catalysts prepared here will be examined by TPR to determine reducibility and the extent of adverse iron-silica interactions. A fundamental study of Fe/silica interactions has been performed using temperature programmed reaction and TEM to provide understanding of how the silica binders influence the activity of Fe catalysts. To understand differences in the reducibility of the iron phase caused by silica, we have set up a temperature programmed reduction facility. TPR in H, as well as in CO was performed of Fe/ SiO, catalysts prepared by impregnation as well as by precipitation. What is unique about these studies is that high resolution TEM was performed on samples removed from the reactor at various stages of reduction. This helps provide direct evidence for the phase changes that are detected by TPR. We have continued the analysis of catalysts received from slurry reactor runs at Texas A&M university (TAMU) and the University of Kentucky Center for Applied Energy Research (CAER) by x-ray diffraction. The purpose of the XRD analysis was to determine the phase composition of catalysts derived from a slurry reaction run using Fe Fischer-Tropsch catalysts. We had previously described how catalyst removed in the hot wax may oxidize to magnetite if the wax is air-exposed. We have now received catalysts from CAER that were removed under a protective inert blanket, and we are in the process of analyzing them, but preliminary work presented here shows very little oxide by XRD. However, the catalyst that was used in these runs at CAER was a different composition than that used in previous runs, so the protective effect of an inert blanket will need further study. Finally, we point out how the interference by the wax can make it difficult in some cases to analyze the phases in a Fe catalyst. Several approaches have been used to remove the interference from the wax and we come to the surprising conclusion that Fe may be present in a working slurry reactor despite the high CO/ H{sub 2} ratio. Further work is underway to corroborate this finding

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here