Radiative interactions with micromachined surfaces: Spectral polarized emittance. Final report
Author(s) -
J.N. Zemel
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/64212
Subject(s) - emissivity , thermal emittance , wafer , radiative transfer , materials science , fabrication , optoelectronics , silicon , grating , thermal radiation , thermal emission , optics , thermal , physics , medicine , beam (structure) , alternative medicine , pathology , meteorology , thermodynamics
This report covers work aimed at obtaining additional information on the electromagnetic emissions from heated, microstructured surface. Earlier work had established that thermal emission was a useful means for obtaining broad band information on the electromagnetic properties of these surfaces. Among the earlier results obtained was a demonstration that there was an increased amount of coherent radiation emitted from these structures. Also found was that the nature of the emission was dependent on the carrier concentration of the emitting material as well as the details of the geometry of surface structures. Described in this report is the normal polarized emissivity of undoped silicon gratings of different dimensions measured with a new emissometer. Deep grating fabrication, formation of a titanium silicide layer, and wafer cutting is described
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom