z-logo
open-access-imgOpen Access
Position and Orientation Tracking System three-dimensional graphical user interface. CRADA final report
Author(s) -
Rick Barry,
G.A. Armstrong,
B.L. Burks
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/629427
Subject(s) - robotics , orientation (vector space) , graphical user interface , interface (matter) , detector , tracking system , artificial intelligence , computer science , robotic arm , software , control room , real time computing , position (finance) , engineering , robot , computer hardware , computer vision , simulation , electrical engineering , operating system , geometry , mathematics , bubble , maximum bubble pressure method , kalman filter , finance , economics
Under the Department of Energy`s Robotics Technology Development Program (RTDP) Tank Waste Retrieval (TWR) program, a major effort is under way to develop technology for remediating the waste in underground storage tanks that contain radioactive and hazardous waste. A large part of the program`s effort has gone towards development of remotely operable robotics equipment, including the Houdini Vehicle and the Position and Orientation Tracking System (POTS). Since planned operation of this equipment is to be completely remote, a significant effort is needed to ensure that operators have sufficient system information to operate the equipment efficiently and safely. ORNL developed POTS and RedZone Robotics, Inc. developed Houdini which can be operated together to provide both position and orientation descriptions of the Houdini vehicle, relative to a world reference frame, while operating inside an underground storage tank. The Houdini vehicle has been outfitted with an optical detection system that houses infrared detectors. The infrared detectors are part of the POTS tracking system. The sensors provide a set of timing pulses to the POTS control computer whenever a laser beam from one of the four POTS laser scanners strikes a detector. Using the pointing angle information from each POTS laser scanners, the POTS control computer is able to compute the pose of the Houdini vehicle at a rate of approximately 25 Hz. This information, along with the orientation of the Houdini`s Schilling Titan II robot arm, is used to present the pose information to the operator in a 3-D graphical user interface using software that has been developed by this Cooperative Research and Development Agreement (CRADA). The graphical display presents the data to the operator in a format that is readily understood. The equipment operators are able to use the information in real-time to enhance the operator`s ability to safely and efficiently control the remotely-operated vehicle

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom