z-logo
open-access-imgOpen Access
Methane coupling by membrane reactor. First quarterly report, 1997
Author(s) -
Yi Hua
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/621747
Subject(s) - methane , oxidative coupling of methane , dilution , yield (engineering) , catalysis , oxygen , chemistry , analytical chemistry (journal) , membrane reactor , volumetric flow rate , inorganic chemistry , materials science , chromatography , thermodynamics , organic chemistry , metallurgy , physics
The Mn-W-Na/SiO{sub 2} catalyst was studied by running the methane coupling reactions at different methane to oxygen ratios, temperatures and dilution gas flow rates. For methane to oxygen ratios less than 3, the C{sub 2} yield was almost the same; and C{sub 2} yield began to decrease as the methane to oxygen ratio was further increased. The optimal temperature observed was around 800{degrees}C, where the C{sub 2} yield reached a maximum value. Increasing the dilution gas (helium) flow rate resulted in higher C{sub 2} selectivity; however, after a certain dilution gas flow rate the C{sub 2} yield began to decrease due to a decrease in methane conversion as a result of the reduced contact time. The stability study of the catalyst showed that, after five successive run cycles, the C{sub 2} yield obtained decreased from 24% to 19% at 780 {degrees}C, and methane, oxygen and helium flow rates of 12.2, 4.1, and 44. 3 mm/min, respectively. XRD analysis showed that, after the reaction, the XRD peaks of the cristabolite and Na{sub 2}WO{sub 4} phases in the catalyst became smaller than those in the fresh catalyst, and that at least one new, unidentified phase was observed. Mn-W-Na/SiO{sub 2} catalyst was used as the methane oxidative coupling catalyst in a porous membrane reactor and its performance was compared with a packed reactor operated at similar conditions. Although the membrane reactor showed lower methane conversion at the same reaction conditions, it gave higher C{sub 2} selectivity and C{sub 2} yield at similar methane conversions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom