z-logo
open-access-imgOpen Access
Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects: Report for April 1986-September 1987
Author(s) -
R. E. Meyer,
W.D. Arnold,
James G. Blencoe,
G. D. O’Kelley,
J.F. Land
Publication year - 1988
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/60479
Subject(s) - sorption , groundwater , uranium , strontium , radioactive waste , radionuclide , caesium , elution , radiochemistry , actinide , chemistry , geology , environmental science , nuclear chemistry , adsorption , materials science , chromatography , geotechnical engineering , nuclear physics , physics , organic chemistry , metallurgy
Experiments were conducted with tuff from the proposed high-level nuclear waste site at Yucca Mountain, Nevada. Batch sorption ratio determinations were conducted for strontium, cesium, uranium, and technetium onto samples of tuff using real and synthetic groundwater J-13. There were no significant differences in sorption ratios in experiments with real and synthetic groundwater. Columns 1 cm in diameter and about 5 cm long were constructed, and experiments were conducted with the objective of correlating the results of batch and the column experiments. The characteristics of the columns were tested by determination of elution curves in J-13 containing tritium and technetium as the TcO{sub 4}{sup -} ion. For strontium and cesium, fairly good correlation between values of the sorption ratio obtained by the two methods was observed. Little or no technetium sorption was observed with either method. The elution peaks obtained with neptunium and uranium were asymmetrical and the shapes were often complex, observations which suggest irreversibilities in the sorption reaction. An experiment was performed to provide information on the compositions of the first groundwaters that will contact waste canisters in a tuff-hosted repository after very near field temperatures have cooled to below 100{degree}C. Synthetic groundwater J-13 was slowly dripped onto a slab of tuff maintained at 95-100{degree}C, and the result was a thin encrustation of solids on the slab as the water evaporated. Fresh J-13 groundwater was then allowed to contact the encrustation in a vessel maintained at 90{degree}C. The principal result of the experiment was a significant loss of calcium and magnesium from the fresh J-13 groundwater

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom